Фосфориты + микробы =

вопросы современной биологической химии, молекулярной биологии, химической энзимологии и смежных наук
biochem, molbio, chemical enzymology and related discussions for professionals
Ответить
Аватара пользователя
barsergey
Сообщения: 996
Зарегистрирован: Вс май 22, 2005 12:35 pm
Контактная информация:

Фосфориты + микробы =

Сообщение barsergey » Ср май 03, 2006 5:25 pm

Мне вот интересно, имеет ли биологический способ (с помощью микроорганизмов) перевода фосфора из фосфоритов какое-либо преимущесто перед химическим?
Если сырье - апатит (45% Р2О5), то вряд-ли, а если фосфорит (10-12%Р2О5)? Вообще, видел ли кто-нибудь технико-экономические расчеты по переводу фосфоритов в усвоемую для растений форму? Или хотя бы приличную статью, с какими-либо конкретными цифрами, а не приблизительные "может-не может".
Что думают по этому поводу форумчане?

Аватара пользователя
slavert
Сообщения: 6688
Зарегистрирован: Сб янв 17, 2004 12:28 am

Сообщение slavert » Ср май 03, 2006 5:59 pm

Bibliographic Information

Solubilization of insoluble phosphates by Penicillium sp. GL-101 isolated from soil. Choi, Myoung-Chul; Chung, Jong-Bae; Sa, Tong-Min; Lim, Sun-Uk; Kang, Sun-Chul. Dep. Biotechnology, Taegu Univ., Kyungbook, S. Korea. Han'guk Nonghwa Hakhoechi (1997), 40(4), 329-333. Publisher: Korean Society of Agricultural Chemistry and Biotechnology, CODEN: JKACA7 ISSN: 0368-2897. Journal written in Korean. CAN 127:290391 AN 1997:630337 CAPLUS

Abstract

Phosphate-solubilizing microorganisms (1,000 bacteria and 200 fungi) were isolated from soil around Kyungnam and Kyungbook regions by use of a potato dextrose agar-calcium phosphate medium. A fungus with the greatest phosphate-solubilizing activity was selected and identified as Pencillium sp. GL-101 on the basis of the morphol. characteristics of conidiophore and conidia, flask shape of phialide, simple branching of the conidiophore, and the columnar shape of conidial head, in malt ext. agar and potato dextrose agar media. The optimum temp. and initial pH to solubilize rock phosphate in potato dextrose broth-rock phosphate medium were 25C and pH 7.5, resp. Under these optimum conditions, phosphate-solubilizing activities of Penicillium sp. GL-101 were quant. detd. against four types of insol. phosphate: tricalcium-phosphate, aluminum phosphate, hydroxylapatite and rock phosphate. The fungus discharged free phosphates to the culture broth at concns. of 1,152 ppm with tricalcium-phosphate, 565 ppm with rock phosphate, 292 ppm with aluminum phosphate, and 217 ppm with hydroxyapatite, resp.

Indexing -- Section 10-2 (Microbial, Algal, and Fungal Biochemistry)
Section cross-reference(s): 19

Penicillium
(solubilization of insol. phosphates by Penicillium GL-101 isolated from soil)

Fertilizers
Phosphate rock
Role: AGR (Agricultural use); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process); USES (Uses)
(solubilization of insol. phosphates by Penicillium GL-101 isolated from soil)

Phosphates, biological studies
Role: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(solubilization of insol. phosphates by Penicillium GL-101 isolated from soil)

7723-14-0, Phosphorus, biological studies
Role: AGR (Agricultural use); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process); USES (Uses)
(solubilization of insol. phosphates by Penicillium GL-101 isolated from soil)

1306-06-5, Hydroxylapatite






7758-87-4, Tricalcium-phosphate
7784-30-7, Aluminum phosphate
Role: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(solubilization of insol. phosphates by Penicillium GL-101 isolated from soil)

Supplementary Terms

phosphate solubilization Penicillium soil; fertilizer phosphate solubilization Penicillium soil


Bibliographic Information

Possibilities of microbial solubilization of mineral phosphorus in soil. Kubat, Jaromir. Vyzk. Ustav Rostl. Vyroby, Prague, Czech. Scientia Agriculturae Bohemoslovaca (1987), 19(4), 287-93. CODEN: SABHAM ISSN: 0582-2343. Journal written in English. CAN 108:203848 AN 1988:203848 CAPLUS

Abstract

In a pot expt. a luvisol soil that had been cropped for 3 yr without fertilization was fertilized with rock phosphate (0, 500, and 2000 kg/ha). Some exptl. variants included application of barley straw (6.6 g/5 kg soil) with or without urea (0.5 g/pot), and others involved cropping of corn and horse bean (Faba vulgaris), in either order, with application of urea (1.072 and 0.1429 g/pot for the resp. crops) and KCl (0.5276 g/pot in both cases). None of the differences among rock phosphate treatments in crop yield or P consumption were significant. Rock phosphate application had no apparent effect on the proportion of P-solubilizing bacteria in fallow soil but had a pos. effect in cropped soil. After 2 yr mineral P in the soil was fractionated by the Ginzburg and Lebedeva method; P content in the Ca-P II fraction (HOAc-NH4 molybdate ext.) differed by .apprx.200 mg P/kg soil between the zero and max. rock phosphate rate in fallow soil, whereas in cropped soil the difference was only .apprx.100 mg P/kg.

Indexing -- Section 19-5 (Fertilizers, Soils, and Plant Nutrition)

Broad bean
Corn
(fertilizer expt. with, with macronutrients, phosphate rock solubilization in)

Fertilizer experiment
(with macronutrients, with corn and horse bean, phosphate rock solubilization in)

Soils
(Luvisols, phosphorus fractions in, phosphate rock application and cropping effect on, bacterial populations in relation to)

Straw
(barley, soil amendment with, phosphate rock solubilization in relation to)

Fertilizers
Role: BIOL (Biological study)
(phosphate rock, soil mineral phosphorus fractions and phosphate-solubilizing bacterial populations response to)

Bacteria
(soil, phosphate-solubilizing, phosphate rock application effect on populations of, cropping in relation to)

Barley
(straw, soil amendment with, phosphate rock solubilization in relation to)

Fertilizers
Role: BIOL (Biological study)
(urea, soil application of barley straw and, phosphate rock solubilization in relation to)

7723-14-0, Phosphorus, biological studies
Role: BIOL (Biological study)
(crop consumption and soil mineral fractions of, phosphate rock application effect on, bacterial populations in relation to)

7723-14-0
Role: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
(fertilizers, phosphate rock, soil mineral phosphorus fractions and phosphate-solubilizing bacterial populations response to)

57-13-6
Role: AGR (Agricultural use); BIOL (Biological study); USES (Uses)
(fertilizers, urea, soil application of barley straw and, phosphate rock solubilization in relation to)

Supplementary Terms

phosphate rock solubilization soil bacteria; cropping phosphate rock soil phosphorus


Bibliographic Information

Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus, Fomitopsis sp. PS 102. Kang, Sun Chul; Ha, Chul Gyu; Lee, Tae Geun; Maheshwari, D. K. Department of Biotechnology, Taegu University, Kyungsan, S. Korea. Current Science (2002), 82(4), 439-442. Publisher: Current Science Association, CODEN: CUSCAM ISSN: 0011-3891. Journal written in English. CAN 137:2870 AN 2002:248001 CAPLUS

Abstract

The field soil at Taegu, South Korea, was screened for phosphate-solubilizing fungi. Such strains were identified to be Fomitopsis sp. Phosphate-solubilizing ability of Fomitopsis sp. PS 102 was studied on four different insol. phosphates, viz., tricalcium phosphate, rock phosphate, aluminum phosphate and hydroxyapatite. Tricalcium phosphate was solubilized maximally, while hydroxyapatite could not be solubilized by the strain. An effect of salinity under in vitro conditions on the solubilization activity of rock phosphate was also obsd. The presence of 1% NaCl enhanced the solubilization of rock phosphate by Fomitopsis sp. PS 102.

Indexing -- Section 10-2 (Microbial, Algal, and Fungal Biochemistry)

Phosphates, biological studies
Role: BSU (Biological study, unclassified); BIOL (Biological study)
(inorg.; solubilization of insol. inorg. phosphates by soil-inhabiting fungus Fomitopsis)

Fomitopsis
(solubilization of insol. inorg. phosphates by soil-inhabiting fungus Fomitopsis)

Phosphate rock
Role: BSU (Biological study, unclassified); BIOL (Biological study)
(solubilization of insol. inorg. phosphates by soil-inhabiting fungus Fomitopsis)

7647-14-5, Sodium chloride, biological studies
Role: BSU (Biological study, unclassified); BIOL (Biological study)
(sodium chloride effect on solubilization of insol. inorg. phosphates by soil-inhabiting fungus Fomitopsis)

7758-87-4, Tricalcium phosphate
7784-30-7, Aluminum phosphate
Role: BSU (Biological study, unclassified); BIOL (Biological study)
(solubilization of insol. inorg. phosphates by soil-inhabiting fungus Fomitopsis)

Supplementary Terms

phosphate metab Fomitopsis

Citations

1) Vassileva, M; World J Microbiol Biotech 1998, 14, 281
2) Omar, S; World J Microbiol Biotech 1998, 14, 211
3) Abd Alia, M; Lett Appl Microbiol 1994, 18, 294
4) Asea, P; Soil Biol Biochem 1988, 20, 459
5) Singal, R; Folia Microbiol 1994, 39, 33
6) Gyaneshwar, P; Curr Sci 1998, 74, 1097
7) Kucey, M; Adv Agron 1989, 42, 198
8) Toro, M; Appl Environ Microbiol 1997, 63, 4408
9) Jones, D; Plant Soil 1994, 166, 247
10) Yadav, K; Biotechnological Approaches in Soil Microorganisms afbr Sustainable Crop Production 1997, 293
11) Newton, L; Leucaena Res Rep 1992, 13, 10
12) Cunningham, J; Appl Environ Microbiol 1992, 58, 1451
13) Ahmad, N; J Gen Appl Microbiol 1968, 14, 89
14) Swaby, R; Nutrition of the Legumes 1958, 289
15) Agnihotri, V; Can J Microbiol 1970, 16, 877
16) Zapata, F; Fert Res 1995, 41, 189
17) Nahas, E; World J Microbiol Biotechnol 1996, 12, 567
18) Carranza-Morse, J; Mycotaxon 1986, 25, 469
19) Olsen, S; Methods of Soil Analysis 1982, 403
20) Choi, M; Agric Chem Biotech 1997, 40, 329
21) Gaind, S; Curr Sci 1989, 58, 1208
22) Johri, J; Curr Microbiol 1999, 39, 89
23) Nautiyal, C; FEMS Microbiol Lett 2000, 182, 291
24) Chhonkar, P; Can J Microbiol 1967, 32, 183
25) Leyval, C; 1st European Symposium on Mycorrhiza 1985
26) Das, A; J Indian Soc Soil Sci 1963, 11, 203
27) Wani, P; Indian J Microbiol 1979, 19, 23
28) Bardiya, M; Folia Microbiol 1974, 19, 386
29) Kumar, H; Symbiosis 1999, 26, 279


Bibliographic Information

Effect of phosphate solubilizing fungi on P uptake and growth of tobacco in rock phosphate applied soil. Park, Myung-Su; Singvilay, Olayvahn; Seok, Yeong-Seon; Chung, Jong-Bae; Ahn, Ki-Sup; Sa, Tong-Min. Dept. of Agricultural Chemistry, Chungbuk National University, Cheongju, S. Korea. Korean Journal of Soil Science and Fertilizer (2003), 36(4), 233-238. Publisher: Korean Society of Soil Science and Fertilizer, CODEN: KJSSBE Journal written in English. CAN 144:253450 AN 2005:597975 CAPLUS

Abstract

The effect of phosphate solubilizing microbes (PSM) on plant P uptake and growth in rock phosphate applied soil was tested under a greenhouse condition. Tobacco plants were grown in nonsterilized soil inoculated with Penicillium oxalicum CBPS-3F-Tsa with or without rock phosphate application as P fertilizer. P concn. in tobacco plants was increased by the application of rock phosphate, while inoculation of soil with fungi further significantly increased P concn. in tobacco plants compared with the noninoculated treatments. P uptake by tobacco plants was also increased by the application of rock phosphate and PSM inoculation, and the significant comparison has been made with single rock phosphate treatment. Growth of tobacco plant was also significantly increased in the treatments receiving rock phosphate, while the combined application of rock phosphate and PSM further increased plant growth. The pos. effect of PSM inoculation on plant growth was closely related in plant P content and uptake. These results suggest that Penicillium oxalicum CBPS-3F-Tsa could solubilize insol. soil phosphates and rock phosphate which can promote growth and P uptake of tobacco plants.

Indexing -- Section 19-5 (Fertilizers, Soils, and Plant Nutrition)
Section cross-reference(s): 10, 53

Fertilizer experiment
Growth and development, plant
Leaf
Nicotiana tabacum
Penicillium oxalicum
Plant-soil system
Soil acidity
Soil organic matter
Stem
(effect of phosphate solubilizing fungi on phosphorus uptake and growth of tobacco in rock phosphate applied soil)

Phosphate rock
Role: AGR (Agricultural use); BSU (Biological study, unclassified); BIOL (Biological study); USES (Uses)
(effect of phosphate solubilizing fungi on phosphorus uptake and growth of tobacco in rock phosphate applied soil)

Fertilizers
Role: AGR (Agricultural use); BSU (Biological study, unclassified); BIOL (Biological study); USES (Uses)
(phosphorus; effect of phosphate solubilizing fungi on phosphorus uptake and growth of tobacco in rock phosphate applied soil)

Biological transport
(uptake; effect of phosphate solubilizing fungi on phosphorus uptake and growth of tobacco in rock phosphate applied soil)

7723-14-0, Phosphorus, biological studies
Role: BSU (Biological study, unclassified); BIOL (Biological study)
(effect of phosphate solubilizing fungi on phosphorus uptake and growth of tobacco in rock phosphate applied soil)

Supplementary Terms

rock phosphate solubilizing fungi phosphorus uptake soil tobacco; Penicillium oxalicum rock phosphate solubilizing phosphorus uptake soil tobacco

Citations

Alexander, M; Introduction to soil microbiology 1977
Asea, P; Soil Biol Biochem 1988, 20, 459
Bojinova, D; Nutr Cyc Agroecosyst 1997, 47, 227
Choi, M; Agric Chem Biotechnol 1997, 40, 329
Earl, K; Soil Sci Soc Am J 1979, 43, 674
Gaur, A; Phosphate solubilizing microorganisms as biofertilizer 1990
Gerke, L; Z Pflanzenernahr Bodenk 1992, 155, 17
Goenadi, D; Soil Sci Soc Am J 2000, 64, 927
Jackson, M; Soil chemical analysis 1958
Khasawneh, F; Adv Agron 1978, 30, 159
Matty, M; Rev Biotechnol 1992, 12, 87
Murphy, J; Anal Chim Acta 1962, 27, 31
Nahas, E; Soil Biol Biochem 1990, 22, 1097
Narsian, V; Soil Biol Biochem 2000, 32, 559
Nelson, D; Methods of soil analysis, Part 2. Chemical and microbiological properties (2nd ed) 1982, 539
Olsen, S; Methods of soil analysis, Part 2. Chemical and microbiological properties (2nd ed) 1982, 403
Omar, S; World J Microbiol Biotechnol 1998, 14, 211
Pikovskaya, R; Microbiologiya 1948, 17, 362
Rajan, S; Adv Agron 1996, 57, 77
Thien, S; Soil Sci Soc Am J 1992, 56, 814
Vassilev, N; Biotechnol Tech 1996, 10, 585
Wahid, O; Microbiol Res 2000, 155, 221

Аватара пользователя
slavert
Сообщения: 6688
Зарегистрирован: Сб янв 17, 2004 12:28 am

Сообщение slavert » Ср май 03, 2006 6:07 pm

вообще смотри exchange

Аватара пользователя
barsergey
Сообщения: 996
Зарегистрирован: Вс май 22, 2005 12:35 pm
Контактная информация:

Сообщение barsergey » Ср май 03, 2006 6:15 pm

за инфу спасибо, а личное мнение?

Аватара пользователя
slavert
Сообщения: 6688
Зарегистрирован: Сб янв 17, 2004 12:28 am

Сообщение slavert » Ср май 03, 2006 6:16 pm

я этим не занимаюсь

Iskander
Сообщения: 3152
Зарегистрирован: Чт июн 30, 2005 6:45 pm

Сообщение Iskander » Ср май 03, 2006 8:31 pm

Можно осуществить запросто.

Берём метантенк (пару раз в форуме всплывала эта тема)
Кидаем туда фосфорит. Дуем воздух. При аэробном окислении азотсодержащей органики среда закисляется азотной кислотой. Азотная кислота переводит фосфор в растворимую форму.
Метана конечно не получится, но полноценное удобрение сварганить можно.

Аватара пользователя
slavert
Сообщения: 6688
Зарегистрирован: Сб янв 17, 2004 12:28 am

Сообщение slavert » Чт май 04, 2006 6:25 pm

уже все сделано с 80-х годах, смотрите ссылки

Аватара пользователя
barsergey
Сообщения: 996
Зарегистрирован: Вс май 22, 2005 12:35 pm
Контактная информация:

Сообщение barsergey » Пт май 05, 2006 2:13 pm

Iskander писал(а): Берём метантенк ... Дуем воздух.
Берем ректификационную колонну и используем для смешения жидкостей.
Iskander писал(а): При аэробном окислении азотсодержащей органики среда закисляется азотной кислотой. Азотная кислота переводит фосфор в растворимую форму.
В этом то и вся собака зарывшаяся. Ежели у Вас (в смысле в Росси) все работают на апатите более 40 % Р2О5, то так можно делать, а ежели на фосфорите 12-14 % Р2О5, то легче застрелиться, пока дождешься, когда сначала растворяться все карбонаты (16-17 % СО2).
Iskander писал(а): ... полноценное удобрение сварганить можно..
У нас так наш ИОНХ делал, все было якобы замечательно, а потом я просто посчитал, сколько нужно на это дело навоза - понадобится увеличить мощности Республики по, извините, г-ну в 10 раз. НЕРЕАЛЬНО.
Но с академиками спорить не решился - я защититься хочу.

Аватара пользователя
barsergey
Сообщения: 996
Зарегистрирован: Вс май 22, 2005 12:35 pm
Контактная информация:

Сообщение barsergey » Пт май 05, 2006 2:22 pm

slavert писал(а):уже все сделано с 80-х годах, смотрите ссылки
а хоть один действующий завод? Я имею в виду не биологическую очистку сточных вод, а именно перевод фосфоритов в расторимую форму.
Только в этом случае можно сказать, что все уже сделано до нас.

Ежели смостреть ссылки, то проще идти торговать на рынке зеленью, так как по книжкам и журналам уже все давно известно и изучено и ученые уже не нужны.

А взять хотя бы фосфогипс: проблема есть, он изучен вдоль и поперек, а применяют только там, где другого сырья уже не осталось (Япония), а всему остальному миру - пофигу. Ну собрались раз в год, ну обсудили проблемку, ну разошлись. А этот вопрос как ни поднимай, он все равно стоять будет. Вот так.

Ответить

Вернуться в «биохимия и молекулярная биология / biochemistry and molecular biology»

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и 3 гостя