новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

Фосфорная кислота


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Фосфорная кислота (ортофосфорная кислота) H3PO4, мол. м. 97,995; бесцветные гигроскопичные кристаллы моноклинной сингонии (а = 0,5762 нм, b= 0,4831 нм, с =1,1569 нм, = 95,31°, пространственная группа Р21/с); расплывается на воздухе. т. пл. 42,50 С; плотн. 1,88 г/см3; -1283 кДж/моль; наиболее стабильное соединение в ряду кислородсодержащих кислот фосфора. В расплавленном состоянии склонна к переохлаждению; при 15 0C образует густую маслянистую жидкость. при -121 0C- стеклообразную массу.

Фосфорная кислота смешивается с водой в любых соотношениях. Разбавленные водные растворы имеют кисловатый вкус. Из высококонцентрированных растворов кристаллизуется в виде гемигидрата (полугидрата) H3PO4•0,5H2O- бесцветные кристаллы моноклинной сингонии (а = 0,7922 нм, b = 1,2987 нм, с = 0,7470 нм, = 109,9°; пространственная группа Р21/a). Молекула безводной H3PO4 и ее кристаллогидрата содержит тетраэдрическую группу PO4. В безводной H3PO4 образуются водородные связи типа P — О — H ... O = P (рис. 1) (расстояние между атомами О 0,253 нм), которые удерживают структуры PO4 в виде слоев, пара.лельных одной из плоскостей кристалла. Водородные связи сохраняются и в концентрированных (70-80%) растворах H3PO4, что отчасти обусловливает ее сиропообразную природу. В разбавленных до 40-50% растворах отмечена более устойчивая водородная связь фосфат-анионов с молекулами воды, а не с другими фосфат-анионами. В растворах H3PO4 имеет место обмен атомами кислорода между группами PO4 и водой.


H3PO4 - сильная кислота, K1 7,1•10-3Ка 2,12), K2 6,2•10-8 (рКа 7,20), K3 5,0•10-13Ка 12,32); значения K1 и K2 зависят от температуры. Диссоциация по первой ступени экзотермична, по второй и третьей - эндотермична. Фазовая диаграмма системы H3PO4 - H2O приведена на рис. 2. Максимум кривой кристаллизации - при температуре 302,4 К и содержании H3PO4 91,6% (твердая фаза - гемигидрат). В табл. приведены свойства растворов H3PO4

ХАРАКТЕРИСТИКА ВОДНЫХ РАСТВОРОВ H3PO4

Содержание, % по массе

T. затв., 0C

T. кип., 0C


кДж/(кг•К)


Па •с (25 0C)

Уд. электрич. проводимость, См/м (25 0C)

Давление пара. Па (25 0C)

H3PO4

P2O5

5

3,62

0,8

100,10

4,0737

0,0010

10,0

3129,1

10

7,24

-2,10

100,20

3,9314

0,0011

18,5

3087,7

20

14,49

-6,00

100,80

3,6467

0,0016

18,3

2986,4

30

21,73

-11,80

101,80

3,3411

0,0023

14,3

2835,7

40

28,96

-21,90

103,90

3,0271

0,0035

11,0

2553,1

50

36,22

-41,90

104,00

2,7465

0,0051

8,0

2223,8

60

43,47

-76,9

114,90

2,4995

0,0092

7,2

1737,1

70

50,72

-43,00

127,10

2,3278

0,0154

6,3

1122,6

75

54,32

-17,55

135,00

2,2692

0,0200

5,8

805,2

H3PO4 при нормальных условиях малоактивна и реагирует лишь с карбонатами, гидроксидами и некоторыми металлами. При этом образуются одно-, двух- и трехзамещенные фосфаты. При нагр. выше 80 0C реагирует даже с неактивными оксидами. кремнеземом и силикатами. При повышенных температурах H3PO4 - слабый окислитель для металлов. При действии на металлическую поверхность раствором H3PO4• с добавками Zn или Mn образуется защитная пленка (фосфатирование). Фосфорная кислота при нагревании теряет воду с образованием последовательно пиро- и метафосфорных кислот:


Фосфолеум (жидкий фосфорный ангидрид, суперфосфорная кислота) включает кислоты, содержащие от 72,4 до 88,6% P2O5, и представляет собой равновесную систему, состоящую из орто-, пиро-, триполи-, тетраполи- и др. фосфорных кислот. При разбавлении суперфосфорной кислоты водой выделяется значит. кол-во тепла, и полифосфорные кислоты быстро переходят в ортофосфорную.


От других фосфорных кислот H3PO4 можно отличить по реакции с AgNO3 - выпадает желтый осадок Ag3PO4. Остальные фосфорные кислоты образуют белые осадки.

Получение. H3PO4 в лабораторных условиях легко получить окислением фосфора 32%-ным раствором азотной кислоты:


В промышленности H3PO4 получают термическим и экстракционным способами.

Термический способ (позволяет производить наиболее чистую H3PO4) включает основные стадии: сжигание (окисление) элементного фосфора в избытке воздуха, гидратацию и абсорбцию полученного P4O10, конденсацию фосфорной кислота и улавливание тумана из газовой фазы. Существуют два способа получения P4O10: окисление паров P (в промышленности используют редко) и окисление жидкого P в виде капель или пленки. Степень окисления P в пром. условиях определяется температурой в зоне окисления, диффузией компонентов и др. факторами. Вторую стадию получения термической H3PO4 - гидратацию P4O10 - осуществляют абсорбцией кислотой (водой) либо взаимодействием паров P4O10 с парами воды. Гидратация (P4O10 + 6H2O 4H3PO4) протекает через стадии образования полифосфорных кислот. Состав и концентрация образующихся продуктов зависят от температуры и парциального давления паров воды.

Все стадии процесса могут быть совмещены в одном аппарате, кроме улавливания тумана, которое всегда производят в отдельном аппарате. В промышленности обычно используют схемы из двух или трех основных аппаратов. В зависимости от принципа охлаждения газов существуют три способа производства термической фосфорной кислоты: испарительный, циркуляционно-испарительный, теплообмен-но-испарительный. Испарит. системы, основанные на отводе теплоты при испарении воды или разб. H3PO4, наиб. просты в аппаратурном оформлении. Однако из-за относительно большого объема отходящих газов использование таких систем целесообразно лишь в установках небольшой единичной мощности.

Циркуляционно-испарительные системы позволяют совместить в одном аппарате стадии сжигания P, охлаждения газовой фазы циркулирующей кислотой и гидратации P4O10. Недостаток схемы - необходимость охлаждения больших объемов кислоты. Теплообменно-испарительные системы совмещают два способа отвода теплоты: через стенку башен сжигания и охлаждения, а также путем испарения воды из газовой фазы; существенное преимущество системы - отсутствие контуров циркуляции кислоты с насосно-холодильным оборудованием.

На отечественных предприятиях эксплуатируют технологические схемы с циркуляционно-испарительным способом охлаждения (двухбашенная система). Отличительные особенности схемы: наличие дополнит. башни для охлаждения газа, использование в циркуляционных контурах эффективных пластинчатых теплообменников; применение высокопроизводительные форсунки для сжигания P, обеспечивающей однородное тонкодисперсное распыление струи жидкого P и полное его сгорание без образования низших оксидов.

Технол. схема установки мощностью 60 тыс. т в год 100%-ной H3PO4 приведена на рис. 3. Расплавленный желтый фосфор распыляется нагретым воздухом под давлением до 700 кПа через форсунку в башне сжигания, орошаемой циркулирующей кислотой. Нагретая в башне кислота охлаждается оборотной водой в пластинчатых теплообменниках. Продукционная кислота, содержащая 73-75% H3PO4, отводится из контура циркуляции на склад. Дополнительное охлаждение газов из башни сжигания и абсорбцию кислоты производят в башне охлаждения (гидратации), что снижает последующую температурную нагрузку на электрофильтр и способствует эффективной очистке газов. Отвод теплоты в башне гидратации осуществляется циркулирующей 50%-ной H3PO4, охлаждаемой в пластинчатых теплообменниках. Газы из башни гидратации после очистки от тумана H3PO4 в пластинчатом электрофильтре выбрасываются в атмосферу. На 1 т 100%-ной H3PO4 расходуется 320 кг P.


Рис. 3. Циркуляционная двухбашенная схема произ-ва термич. H3PO4: 1 - сборник кислой воды; 2 - хранилище фосфора; 3,9 - циркуляционные сборники; 4,10 - по-гружные насосы; 5,11 - пластинчатые теплообменники; 6 - башня сжигания; 7 - фосфорная форсунка; 8 -башня гидратации; 12 - электрофильтр; 13 - вентилятор.


Более экономичный экстракционный метод получения H3PO4 основан на разложении природных фосфатов кислотами (в основном серной, в меньшей степени азотной и незначительно соляной). Фосфорнокислые растворы, полученные разложением азотной кислотой, перерабатывают в комплексные удобрения, разложением соляной кислотой - в преципитат

Сернокислотное разложение фосфатного сырья [в странах СНГ главным образом хибинского апатитового концентрата и фосфоритов Каратау - основной метод получения экстракционной H3PO4, применяемой для производства концентрированных фосфорных и комплексных удобрений. Суть метода - извлечение (экстрагирование) P4O10 (обычно используют формулу P2O5) в виде H3PO4. По этому методу прир. фосфаты обрабатывают H2SO4 с послед, фильтрованием полученной пульпы для отделения H3PO4 от осадка сульфата Ca. Часть выделенного основного фильтрата, а также весь фильтрат, полученный при промывке осадка на фильтре, возвращают в процесс экстрагирования (раствор разбавления) для обеспечения достаточной подвижности пульпы при ее перемешивании и транспортировке. Массовое соотношение между жидкой и твердой фазами от 1,7 :1 до 3,0:1.

Прир. фосфаты разлагаются по схеме:


Разложению кислотами подвергаются также сопутствующие примеси: кальцит, доломит, сидерит, нефелин, глауконит, каолин и др. минералы. Это приводит к увеличению расхода используемой кислоты, а также снижает извлечение P2O5 в целевой продукт вследствие образования нерастворимых фосфатов железа FeH3(PO4)2• 2,5H2O при концентрациях P2O5 выше 40% (содержание P4O10 обычно дается в пересчете на P2O5) и FePO4• 2H2O - при более низких концентрациях. Выделяющийся при разложении карбонатов СО2 образует в экстракторах стойкую пену; растворимые фосфаты Mg, Fe и Al снижают активность H3PO4, а также уменьшают содержание усвояемых форм P2O5 в удобрениях при послед. переработке H3PO4

С учетом влияния примесей определены требования к фосфатному сырью, согласно которым прир. фосфаты с повышенным содержанием соединений Fe, Al, Mg, карбонатов и органических веществ непригодны для производства H3PO4

В зависимости от температуры и концентрации фосфорная кислота в системе CaSO4-H3PO4-H2O сульфат Ca осаждается в виде дигидрата (гипса), гемигидрата или ангидрита. В реальных условиях осадок загрязнен примесями P2O5 в виде неразложенных природных фосфатов, недоотмытой H3PO4, сокристаллизованных фосфатов различных металлов и др., поэтому образующиеся сульфаты Ca называют соответственно фосфогипс, фосфогемигидрат и фосфо-ангидрит. В зависимости от типа осаждаемого сульфата различают три прямых способа произ-ва экстракционной H3PO4: дигидратный, полугидратный (гемигидратный) и ангидритный, а также комбинированные: полугидратно-дигидратный и дигидратно-полугидратный.

В СНГ наиболее отработан в промышленности дигидратный способ, который отличается высоким выходом P2O5 (93-96,5%) в продукционную кислоту; однако относительно низкая концентрация фосфорной кислоты требует ее последующего упаривания. Основные стадии процесса: экстракция с внешней или внутренней циркуляцией и вакуумным или воздушным охлаждением экстракционной пульпы, дозревание пульпы после экстрактора, отделение H3PO4 на наливных вакуум-фильтрах. Эффективность процесса определяют в осном экстрагирование P2O5 и фильтрование пульпы. Аппаратурное оформление должно обеспечить полноту разложения сырья и кристаллизацию сульфата Ca в условиях минимального пересыщения им жидкой фазы. Оптимальная форма и размеры кристаллов сульфата Ca обусловливают хорошую фильтруемость пульпы и эффективную отмывку от фосфорной кислоты минимальным количеством воды (для получения концентрированной продукционной фосфорной кислоты). Типовая схема дигидратного способа (рис. 4) реализуется при непрерывном дозировании в экстрактор фосфатного сырья, 75-93%-ной H2SO4 и оборотной H3PO4. Т-ра процесса 72-75 0C, продолжительность 4-6 ч. Использование 93%-ной H2SO4 (при переработке апатитового концентрата) позволяет увеличить подачу воды для промывки фосфогипса на вакуум-фильтре. Поступающая на фильтр H3PO4 отделяется, осадок фосфогипса промывается на фильтре по противоточной схеме водой с возвратом образующейся слабой фосфорной кислоты в экстрактор. Фосфорную кислоту, полученную из апатитового концентрата (28-32% P2O5), обычно упаривают до содержания P2O5 52-54%. Концентрирование H3PO4, полученной из фосфоритов (20-24% P2O5), неосуществимо без предварительной очистки от примесей и не используется в промышленности.

Гемигидратный процесс позволяет получить более концентрированную H3PO4 (в отдельных случаях до 50% P2O5 без дополнит, упаривания). Фосфорную кислоту, содержащую 36-38% P2O5, можно получить из апатитового концентрата практически на том же оборудовании, что и в типовом дигидратном процессе с воздушным охлаждением пульпы. Фосфориты Каратау по этому методу не перерабатывают. Широкого распространения гемигидратные процессы пока не получили из-за повышенной температуры (80-100 0C), выделения HF в газовую фазу, более низкого выхода P2O5 в кислоту, чем в дигидратном методе. В усовершенствованных промышленных схемах предусмотрено предварительное смачивание апатитового сырья в скоростном смесителе, разделение зон разложения и кристаллизации и др. Проведение процесса при содержании H2SO4 в жидкой фазе пульпы 0,2-1,0% в первом реакторе и 2,0-3,0% во втором позволяет снизить кол-во растворенного сульфата Ca в продукционной H3PO4, значительно уменьшить зарастание оборудования и трубопроводов, существенно интенсифицировать работу основных технологических узлов.


Рис. 4. Технологическая схема типового произ-ва экстракционной H3PO4 в дигидратном процессе из апатитового концентрата, мощность 110 тыс. т P2O5 в год: 1 - бункер для фосфатного сырья; 2 - ленточный весовой дозатор; 3 - двухбаковый экстрактор; 4 -хранилище серной кислоты; 5 - погружной насос; 6 -расходомер серной кислоты; 7 - циркуляционный погружной насос; 8 - испаритель; 9 - брызгоуловитель; 10 -барботажный нейтрализатор; 11 - конденсатор; 12 -лотки карусельного вакуум-фильтра; 13 - сепараторы (ресиверы); 14 - промежуточный сборник суспензии, образующейся при регенерации фильтровальной ткани; 15, 16, 17 - барометрич. сборники: для первого (основного) фильтра (15), для оборотной фосфорной кислоты (16), для промывного фильтрата (17). Содержание P2O5 в фильтратах: Ф1 - 28-32%, Ф2 - 22-25%, Ф3 - 5-10% .


Ангидритный способ имеет ряд преимуществ перед дигидратным и полугидратным: позволяет без упаривания получать кислоту, содержащую до 50% P2O5; при экстракции в газовую фазу выделяется большая часть фтора; получаемая кислота меньше загрязнена сульфатом Ca. Использование метода в промышленности сдерживают: жесткие коррозионные условия (высокие температуры и концентрации H3PO4), образование мелких кристаллов и необходимость большого числа ступеней противоточной промывки.

Комбинированные способы получения экстракционной H3PO4•- гемигидратно-дигидратный и дигидратно-гемигид-ратный - более технологичны и экономичны, чем одностадийные. Обеспечивают повышение степени использования фосфатного сырья (за счет снижения технол. потерь P2O5), увеличение концентрации продукционной H3PO4, получение более чистого сульфата Ca с целью его дальнейшей переработки.

За рубежом широко распространены гемигидратно-дигидратные схемы, внедрен также дигидратно-гемигидратный способ. Однако комбинированные процессы иногда усложнены двойным фильтрованием или нетехнологичны из-за высокой продолжительности стадии перекристаллизации в гемигидратно-дигидратном методе (общая продолжительность процесса 10-16 ч в зависимости от сырья). Из усовершенствованных комбинированных технологий наиб. интерес представляет отечеств. дигидратно-гемигидратный процесс с промежуточным фильтрованием. Метод позволяет получать из апатитового концентрата H3PO4, содержащую 33-34% P2O5, из фосфоритов Кара-тау - H3PO4, содержащую 28-30% P2O5. Степень извлечения P2O5 из сырья около 99%. Продолжительность процесса не превышает 6 ч. Фосфополугидрат (фосфогемигидрат) содержит менее 0,5% P2O5 и0,15% F и может быть применен как вяжущее средство в строительных материалах.

Термич. H3PO4 выпускается 85-86%-ная (по P2O5, свободна от примесей), экстракционная - в виде 40%-ных водных растворов (содержит много примесей).

Применение. Основная область использования H3PO4 - производство фосфорных и сложных концентрированных удобрений, а также получение кормовых фосфатов, синтетических моющих и водоумягчающих средств. В металлообрабатывающей промышленности H3PO4 применяют для фосфатирования, в текстильной - для обработки и крашения шерсти, растительных и синтетических волокон, в органическом синтезе - как катализатор. H3PO4 и ее производные используют также для приготовления буровых суспензий при нефтедобыче, в производстве различных марок специального стекла, в фотографии (для производства светочувствительных эмульсий), в медицине (приготовление медикаментов, зубных цементов), при обработке древесины (для придания огнестойкости). Производные H3PO4 применяют в пищевой промышленности - от хлебопекарных порошков и приготовления плавленых сыров до колбасного производства и сахароварения.

H3PO4 при высоких концентрациях вызывает ожоги, пары - атрофические процессы в слизистой носа, носовые кровотечения, крошение зубов, изменение формулы крови и др.; ЛД50 1,25 г/кг (внутрижелудочно), ПДK50 25,5 кг/м3 (ингаляция) - для мышей и крыс.

Лит.: Термическая фосфорная кислота, соли и удобрения на ее основе, под ред. H.H. Постникова, M., 1976; Лурье Ю.Ю., Справочник по аналитической химии, 5 изд., M., 1979; Технология фосфора, под ред. В. А. Ершова, В. H. Белова, Л,, 1979; Переработка фосфора, Л., 1985; Технология фосфорных и комплексных удобрений, под ред. С. Д. Эвенчика, А. А. Бродского, M., 1987; Кислотные методы переработки фосфатного сырья, M., 1988.

H. В. Букколини.





выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXXIV
Контактная информация