новости бизнеса
компании и предприятия
нефтехимические компании
продукция / логистика
торговый центр
ChemIndex
новости науки
работа для химиков
химические выставки
лабораторное оборудование
химические реактивы
расширенный поиск
каталог ресурсов
электронный справочник
авторефераты
форум химиков
подписка / опросы
проекты / о нас


контакты
поиск
   

главная > справочник > химическая энциклопедия:

Первое начало термодинамики


выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ, один из осн. законов термодинамики; является законом сохранения энергии для систем, в которых существ, значение имеют тепловые процессы (поглощение или выделение тепла). Согласно первому началу термодинамики, термодинамич. система (напр., пар в тепловой машине) может совершать работу только за счет своей внутр. энергии или к.-л. внеш. источника энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из некоторого источника.

Первое начало термодинамики вводит представление о внутренней энергии системы как ф-ции состояния. При сообщении системе некоторого кол-ва теплоты Q происходит изменение внутр. энергии системы DU и система совершает работу А:

DU = Q + А.

Первое начало термодинамики утверждает, что каждое состояние системы характеризуется определенным значением внутр. энергии U, независимо от того, каким путем приведена система в данное состояние. В отличие от значений U значения A и Q зависят от процесса, приведшего к изменению состояния системы. Если начальное и конечное состояния a и b бесконечно близки (переходы между такими состояниями наз. инфи-нитезимальными процессами), первое начало термодинамики записывается в виде:


Это означает, что бесконечно малое изменение внутр. энергии dU является полным дифференциалом ф-ции состояния, т.е. интеграл = Ub — Ua , тогда как бесконечно малые кол-ва теплоты и работы не являются дифференц. величинами, т.е. интегралы от этих бесконечно малых величин зависят от выбранного пути перехода между состояниями а и b (иногда их наз. неполными дифференциалами).

Из общего кол-ва работы, производимой системой объема У, можно выделить работу обратимого изотермич. расширения под действием внеш. давления pe, равную peV, и все остальные виды работы, каждый из которых можно представить произведением некоторой обобщенной силы , действующей на систему со стороны окружающей среды, на обобщенную координату xi , изменяющуюся под воздействием соответствующей обобщенной силы. Для инфинитезимального процесса


Первое начало термодинамики позволяет рассчитать макс. работу, получаемую при изотермич. расширении идеального газа. изотермич. испарении жидкости при пост. давлении, устанавливать законы адиабатич. расширения газов и др. первое начало термодинамики является основой термохимии. рассматривающей системы, в которых теплота поглощается или выделяется в результате хим. реакций, фазовых превращ. или растворения (разбавления растворов).

Если система обменивается со средой не только энергией, но и веществом (см. Открытая система), изменение внутр. энергии системы при переходе из начального состояния в конечное включает помимо работы А и теплоты Q еще и т. наз. энергию массы Z. Бесконечно малое кол-во энергии массы в инфинитезимальном процессе определяется хим. потенциалами mk каждого из компонентов системы. = , где dNk - бесконечно малое изменение числа молей k-гo компонента в результате обмена со средой.

В случае квазистатич. процесса, при котором система в каждый момент времени находится в равновесии с окружающей средой, первое начало термодинамики в общем виде имеет след. мат. выражение:


где p и mk равны соответствующим значениям для окружающей среды (индекс е при Xi обычно опускают). Это выражение используется в прикладной термодинамике применительно к системам, в которых производится работа хим., электрич., магн. и т.п. сил.

Первое начало термодинамики было сформулировано в сер. 19 в. в результате работ Ю. P. Майера, Дж. Джоуля и Г. Гельмгольца. Вместе со вторым началом термодинамики оно составляет основу классич. термодинамики. В 60-х гг. 20 в. сформулирован фундам. закон устойчивого равновесия систем (Д. Хацо-пулос, Д. Кинан, P. Хейвуд), следствиями которого являются как первое начало термодинамики, так и второе начало.

Лит.: Кубо Р., Термодинамика, пер. с англ., M., 1970; Гельфер Я. M., История и методология термодинамики и статистической физики, 2 изд., M., 1981; Хейвуд Р., Термодинамика равновесных процессов, пер. с англ., M., 1983; Alberty R. A., Physical chemistry, 7 ed, N. Y., 1987. © Г.П. Гладышев.




выберите первую букву в названии статьи: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Все новости



Новости компаний

Все новости


© ChemPort.Ru, MMII-MMXXIV
Контактная информация